Zur Chemie von Polyhalocyclohexanen und verwandten Verbindungen.

Mitteilung XIX1: 3,4,5,6-Tetrachlor-cyclohexen-(1)-Isomere.

$_{ m Von}$

R. Riemschneider, O. Mater und P. Schmidt².

Aus dem Chemischen Institut der Freien Universität Berlin-Dahlem. (Eingelangt am 5. Nov. 1952.) Vorgelegt in der Sitzung am 13. Nov. 1952.)

In Fortsetzung der in Mitt. IX und X dieser Reihe³ beschriebenen Untersuchungen wird in vorliegender Arbeit über die Konstitution und Konfiguration von 3 Tetrachlorcyclohexen (I)-Isomeren berichtet, die

Tabelle 1. Die theoretisch möglichen Konfigurationen des 3,4,5,6-Tetrachlor-cyclohexens-(1) (I)⁴.

Körper	Gegenkörper	Verhältnis der meta-p-Stellungen ⁱ Körper: Gegenkörper	
3. 4. 5. 6.	3. 4. 5. 6.		
I. e. e. e. e.	X. p. p. p. p.	0:2	
II. e. e. e. p.	IX. p. p. p. e.	0:1	
III. e. e. p. e.	VIII. p. p. e. p.	0:1	
IV. e. e. p. p.			
V. e. p. e. p.			
VI. e. p. p. e.	VII. p. e. e. p.	0:0	

¹ Mitt. XVIII, Mh. Chem. 83, 1285 (1952) und 84, 1240 (1953).

² Anschrift der Verfasser: Berlin-Charlottenburg 9, Bolivarallee 8.

³ Mitt. X, Mh. Chem. 83, 394 (1952); vgl. auch Mitt. IX, Z. Naturforsch. 7 b, 128 (1952), Fußnote 20.

⁴ Ausschließlich der Spiegelbilder. — Die Zahl der theoretisch möglichen I-Konfigurationen einschließlich der Spiegelbilder beträgt 20, das heißt jede I-Konfiguration hat ein Spiegelbild.

 $^{^5}$ Unter der Zahl der "meta-p-Stellungen" verstehen wir die Anzahl der meta-Stellungen von p-gebundenen Substituenten (p = polar). Näheres vgl. Mitt. XXI.

Tabelle 2. Die theoretisch zu erwartenden 1,2,3,4,5,6-Hexachlor-cyclohexan(II)-Konfigurationen aus den "stabilen" 3,4,5,6-Tetrachlor-cyclohexen-(1)(I)-Konfigurationen⁶.

Lfd. Nr.	I-Konfigurationen	II-Konfigurationen ⁷	Il-Isomere	
-	3. 4. 5. 6.	1. 2. 3. 4. 5. 6.		
1	e. e. e. e.*	e. e. e. e. e.	β	
		e. e. e. e. e. p.	δ	
		e. e. e. e. p. p.*	α	
2	e. e. e. p.*	e. e. e. e. e. p.	δ	
1		e. e. e. p. p.*	α	
ĺ		e. e. e. p. p. p.	γ .	
	*	e. e. e. p. e. p.		
3	e. e. p. e.*	e. e. e. e. p.	δ	
j		e. e. p. e. e. p.	ε	
l		e. e. e. p. e. p.	ζ	
4	e. e. p. p.*	e. e. p. e. p. p.* e. e. e. e. p. p.*	1	
4	e. e. p. p.	e. e. e. p. p. p.	α	
i		e. e. p. e. p. p.*	γ ζ	
5	e.p. e.p.*	e. e. e. p. e. p.	7	
	5. pp.	e. e. p. e. p. p.*	ξ,	
		e.p. e.p. e.p. ⁸		
6	e. p. p. e.* <u></u>	e. e. e. e. p. p.*	α	
	p. e. e. p.*	e. e. p. e. e. p.	ε	
1		e. e. p. e. p. p.*	ϵ ζ	

Alle asymmetrisch gebauten Konfigurationen wurden mit einem Sternchen (*) versehen. Vgl. auch Tabelle 1.

wir durch partielle Halogenabspaltung 3 bzw. Benzolchlorierung nach G. Calingaert und Mitarb. 9 hergestellt haben.

Die nach Entstehung der I-Isomeren zu erwartende 3,4,5,6-Stellung der Cl-Atome ließ sich durch ihr Verhalten gegenüber Alkali, Zinkstaub bzw. Chlor bestätigen: Abspaltung von 2 HCl (\rightarrow Dichlorbenzole), Abspaltung von 4 Cl (\rightarrow Benzol) bzw. Addition von Cl₂ (\rightarrow 1,2,3,4,5,6-Hexachlor-cyclohexane [II]). Da wir, wie in Mitt. IX und X³ bereits mitgeteilt wurde, aus I vom Schmp. 30 bis 31° bei milder Chlorierung nur α -und γ -II, bei stärkerer Chlorierung 1,1,2,2,3,4,5,6-Octachlor-cyclohexan vom Schmp. 150° (III der Konfiguration 1 ep 2 ep 3 e 4 e 5 e 6 e) erhalten haben, kommt diesem I-Isomeren die 3 e 4 e 5 p 6 p-Konfiguration

⁶ Vgl. auch Mitt. IX (Tabelle 3), l. c., Fußnote 3.

⁷ II-Konfigurationen mit 4 Cl-Atomen in p-Bindung wurden nicht mit angegeben.

⁸ Wahrscheinlich nicht existent (3 meta-p-Stellungen⁵ von Cl-Atomen an einer Seite des Sessels).

⁹ G. Calingaert, M. E. Griffing, E. R. Kerr, A. J. Kolka und M. D. Orloff, J. Amer. Chem. Soc. 73, 5224 (1951); XII. Internat. Congr. of Pure and Appl. Chem. 1951, S. 456.

(Tabelle 2, lfd. Nr. 4) zu. Zur Konfigurationsbestimmung der anderen beiden I-Isomeren reichte es aus, die aus ihnen durch Chlorierung hergestellten II-Isomerengemische qualitativ auf α -, β -, γ - und δ -II zu prüfen, da bei der Addition von Chlor an die "stabilen" I-Konfigurationen (Tabelle 1, I bis VII) in jedem Falle verschieden zusammengesetzte II-Isomerengemische zu erwarten sind (Tabelle 2). Bei langzeitiger I-Chlorierung im offenen Gefäß erhielten wir III und bzw. oder 1,1,2,3,4,4,5,6-Octachlor-cyclohexan vom Schmp. 260° (IV der Konfiguration 1 ep 2 e 3 e 4 ep 5 e 6 e), im Einschlußrohr aus jedem der 3 I-Isomeren 1,1,2,2,3,4,4,5,6-Enneachlor-cyclohexan vom Schmp. 95° (V der Konfiguration 1 ep 2 ep 3 e 4 ep 5 e 6 e).

Tabelle 3. Nachweis von 1,2,3,4,5,6-Hexachlor-cyclohexan(II)-Isomeren und Isolierung von 1,1,2,2,3,4,5,6-Octachlor-cyclohexan(III) und β -1,1,2,3,4,4,5,6-Octachlor-cyclohexan(IV) inbzw. aus verschieden stark halogenierten 3,4,5,6-Tetrachlorcyclohexen-(1)(I)-Isomeren.

I-Isomeres vom Schmp. ° C	I-Chlorierungsprodukte (Photochlorierungen)					
	darín nachgewiesen				daraus isoliert	
	α-ΙΙ	β-ΙΙ	γ-II	δ-ΙΊ	111	IV
30 bis 31	+		+		+	
87 ,, 88	+		+	+	+	+
52 ,, 53	+			+	+ 1	+

Zum Nachweis von α -II in I-Chlorierungsprodukten benutzten wir die Tatsache, daß von den tis 1952 bekannten II-Isomeren nur α -II mit l-Brucin in Aceton ein optisch aktives Reaktionsprodukt liefert^{10,11}. Den Einwand, daß die Drehung der Chlorierungsprodukte des bei 30 bis 31° schmelzenden I-Isomeren nicht vorwiegend durch α -II, sondern durch das (in Mitt. XXIV¹² beschriebene) II-Isomere der Konfiguration 1 e 2 e 3 p-4 e 5 p 6 p verursacht wird (Tabelle 2, lfd. Nr. 4), konnten wir durch Isolierung und quantitative Bestimmung von α -II¹¹¹, ³ (und γ -II) in jenem I-Chlorierungsprodukt entkräften. γ -II ließ sich mittels Petrischalenfilmtest in I-freien¹³ I-Halogenierungsprodukten nachweisen³ (Testtier: Drosophila melanogaster). Auf δ-II prüften wir bei Abwesenheit von γ -II (und anderen I-Isomeren) im Hefetest¹⁴. In Gegenwart von γ -II im I-Chlorierungsprodukt ließ sich (bei gleichzeitigem Fehlen von β - und

¹⁰ S. J. Cristol, J. Amer. Chem. Soc. 71, 1894 (1949).

¹¹ Mitt. XV, Z. analyt. Chem. 136, 115 (1952).

¹² Mitt. XXIV, Mh. Chem. 84, 1068 (1953).

¹³ Über die Prüfung der I-Isomeren auf insektizide Wirksamkeit wird an anderer Stelle berichtet werden.

¹⁴ Z. Naturforsch. 3 b, 270 (1948).

 ε -II) die Bildung von IV zum Nachweis von δ -II heranziehen. Der biologische Nachweis von γ - und δ -II in I-Chlorierungsprodukten kann allerdings nur dann als einwandfrei angesehen werden, wenn die möglicherweise mitentstehenden (noch nicht beschriebenen) II-Isomeren der Konfiguration 1 e 2 e 3 e 4 p 5 e 6 p und 1 e 2 p 3 e 4 p 5 e 6 p (Tabelle 2) keine γ - und δ -II-ähnlichen toxikologischen Eigenschaften besitzen oder nur in geringer Menge gebildet werden. β -II wurde auf Grund seiner Stabilität gegen 0,2 n Alkalilauge sowie Zinkstaub (50°) nachgewiesen. III, IV und V haben wir aus stärker halogenierten I-Isomeren isoliert.

Nach den in Tabelle 3 zusammengestellten Resultaten kommen unseren 3 I-Isomeren folgende Konfigurationen zu:

I vom Schmp. 30 bis 31° 3 e 4 e 5 p 6 p*, I vom Schmp. 52 bis 53° 3 e 4 e 5 e 6 e*, I vom Schmp. 87 bis 88° 3 e 4 e 5 e 6 p*.

Ein Vergleich der Konfigurationen unserer 3 I-Isomeren mit den Ergebnissen norwegischer Untersucher¹⁵ war nicht möglich, da diese zwar die Dipolmomente, nicht aber die Schmelzpunkte ihrer fünf zur Konfigurationsbestimmung verwendeten I-Präparate amerikanischer Herkunft bekanntgegeben haben. In der Arbeit von G. Calingaert und Mitarb.⁹ ist nur das auch von uns bereits beschriebene³ niedrig schmelzende I-Isomere behandelt worden; Angaben über die Konfiguration dieses I-Isomeren wurden in jener Publikation nicht gemacht.

Nachtrag bei der Korrektur: Wie uns Herr Prof. Dr. Y. Morino, Tokio, im Juli 1953 brieflich mitgeteilt hat, ist in seinem Laboratorium von M. Shimozawa mittels Dipolmomentmessungen für das bei 30° schmelzende I-Isomere ebenfalls die 3e4e5p6p-Konfiguration gefunden worden.

Der Deutschen Forschungsgemeinschaft danken wir an dieser Stelle bestens für die Förderung der vorliegenden Arbeit.

¹⁵ O. Bastiansen und J. Markali, Acta Chem. Scand. 6, 442 (1952).